On appelle image d'une application f (d'un ensemble A vers un ensemble B) l'image directe par f de l'ensemble de départ A. C'est donc le sous-ensemble de B contenant les images de tous les éléments de A, et uniquement ces images. On le note Im(f).
- .
Exemple : « L'image de la fonction sinus est le segment [–1, 1]. »
Une application est surjective si et seulement si son image coïncide avec son ensemble d'arrivée.
Une application est dite injective si tout élément de son ensemble d'arrivée a au plus un antécédent par f.
Une application est dite bijective si elle est à la fois surjective et injective, ce qui signifie que chaque élément de l'ensemble d'arrivée a un antécédent et que celui-ci est unique.
On peut aussi parler d'image réciproque d'une fonction qui est définie par:
Notes et références
Notes
Références
Articles connexes
- Image d'une application linéaire
- Lemme des noyaux
- Catégorie abélienne
- Limite projective
- Noyau (algèbre)
- Image d'une fonction multivaluée (autrement dit : d'une relation binaire)
- Portail des mathématiques




